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a linear stability analysis

John J. Barnard

@ Fine scale thermal blooming instability:

The fine-zeale thermal blooming instability of a high power trans-atmospheric laser beam is shown to be
affected by the laser pulse length. In thisstudy, we calculate the asymptotic gain of a sinusoidal perturbation
as a function of pulse length and perturbation wavenumber, We include the effects of viscosity, diffusion,
and wind shear, and we heuristically estimate the effect of turbulence, We find that for short 1aser pulses, the
small wavenumber perturbations are reduced due to acoustic effects. However, large wavenumber perturba-
tions remain large and extend to a higher cutoff in wavenumber than in the long laser pulse limit, At
wavenumbers higher than this cutoff, thermal diffusion causes exponential decay of the perturbations. For
long lazer pulse length wind shear and turbulence limit perturbation growth.

. Introduction

It has been known for some time that intense laser
beam propagation through the atmosphere results in
heating of the atmosphere in the path of the beam.
This lowers the air density and index of refraction,
which broadens the optical beam in the crosswind
direction. This behavior has been termed thermal
hlooming (see Ref. 1 and references therein for a re-
view). Recent computational?? and theoretical ana-
lyses*'0show that at high spatial frequencies an insta-
bility can develop which is related to thermal blooming
of the whole beam and which can (possibly severely)
degrade the optical quality of the beam. InRefs.6and
7 the authors investigated the damping of the instabil-
ity in the presence of wind shear. In Refs. 4-8 the
instability has been analyzed for two types of laser
beam propagation: (1) freely propagating (i.e., un-
compensated) beams and (2) phase compensated
beams, in which the initial phase has been adjusted so
that the beam is coliimated on exit from the atmo-
sphere. These investigations have assumed that the
laser pulse lengths have been long compared to the
sound-crossing time of the beam (typically ~10-2s).
In this paper, we extend the analysis of the instabil-
ity in beams which are freely propagating to include
acoustic effects (i.e., we relax the izsobaric assumption
of previous work). The inclusion of acoustic effects
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allows for calculation of the instability growth rate for
pulse times much shorter than those previously ana-
lyzed. We also include viscous and diffusive effects.
We include both molecular and turbulent diffusion
(the latter of which we treat heuristically by using an
effective turbulent diffusion coefficient for small per-
turbation scales and turbulent wind shear for long
scales). In Sec. II, we present the general fluid and
wave equations which govern the propagation of a laser
bheam through the atmosphere. In Sec, III we linearize
and solve the equations analytically for propagation
through an idealized atmosphere. In Sec. IV, we ex-
amine how the growth rates are altered when pulse
times are even shorter than the transit time of light
through the atmosphere. In Sec. V, we estimate the
effects of wind shear and turbulence. Finally, in Sec.
VI the growth rates are summarized, and some of the
implications for pulsing schemes are discussed.

Il. Fluld and Wave Equations

The equations of mass, momentum, and energy con-
servation for a fluid are, respectively,!!
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Here x; and v; are the ith components of the position
and velocity vectors of the fluid; ¢ is time; P, p, ¢, and T'
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are the pressure, mass density, internal energy per unit
mass; and temperature, respectively, of the fluid; [ is
the local intensity of the laser beam; and x4 is the
opacity of the fluid so that the laser energy per unit
volume absorbed by the fluid in unit time is given by
the right-hand side of Eq. (3) K is the thermal con-
ductivity of the fluid, and oy, 18 the viscous stress
tensor given by!!

L + do, 2 5 do) i dy, 4
%=\ ar,  ax; 8 *ax B ax; “
k i ! i

Here 7 is the viscosity coefficient, and { is the second
viscosity coefficient. The momentum and energy
equations can be written in slightly more convenient
forms for the velocity and temperature:

we express the electric field amplitude in terms of the
intensity I and phase S:

E, ~ ' exp(ikS). (11)

We assume that the equilibrium solution of the wave
equation has a spatially and temporally constant in-
tensity Iy and phase S;. We are interested in the
evolution of linear perturbations I; and 51, which in
general will be functions of time and space. By substi-
tuting Eq. (11) into Egq. (10) and maintaining only
linear terms, we obtain
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Here v is the ratio of specific heats, ¥ iz the thermome-
tric conductivity [x = k(v — Llumpg/vksp), and I'r =
kaly — Dumy/kp. Also, in Eq. (6) we have assumed
and made use of the perfect gas law:

P =(y—1)pe = phpT/umy) = pci/y. (7

Here (and above) u,my, and kp are the mean molecular
weight, mass of the hydrogen atom, and Boltzmann’s
constant, respectively, and c; is the sound speed.

The fluid alters the intensity, described via the wave
equation

vn_la‘E
E

+V(E-VIne) =0. (8)

Here E is the electric fleld, ¢ is the dielectric constant,
and ¢ is the speed of light in vacuum. We assume a
form for E in which a light wave propagates in the 2
direction with slowly varying amplitude. We define
the x-component of E to be

E, = E_(z,y,z,t) explilkz — wt)]é,. (9)

Assuming 8/8z « k, and 3/8t « o, the paraxial wave
equation is obtained:

W’ s a g, 0B w3 ar aEx
0—[—;;“‘}2 E, +VviE +2 k » +c'-]'ﬂtE:+ ChrT
(10

We have neglected the third term in Eq. (8), which is
appropriate when |V, | « k. Here V, is the gradient
operating in the plane perpendicular to the propaga-
tion direction, which is assumed to be parallel to the z
axis.

‘M. Solutions of the Linearized Equations

Following Refs. 4-8 we perform a linear stability
analysis of the fluid and wave equations. Asin Ref. 4
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Here n, is the perturbation in the index of refraction (n
= \/¢), which is assumed to be a function of density only
(i.e., ny = pdn/dp).

When pulse lengths are long compared to the light
transit time through the atmosphere (~10-5 s), the
terms on the right-side of Egs. (12) and (13) are negligi-
ble compared with those on the left. We shall return
to Eqgs. (12) and (13) in Sec. IV when we consider pulse
lengths shorter than light transit times. For longer
times these reduce to the phase and intensity equa-
tions of Ref, 4:

a5, n 1 Y

e "_[] + ——'""'4k21_0 vily, (14}
o rvs. (15)
3 oY 1oy

We assume an equilibrium density gg, temperature
T, and wind velocity vp {as well as Iy and Sp), which are
constants in space and time throughout the beam (i.e.,
we adopt the box beam hypothesis of Ref. 4). The
linearized continuity, veloclty, and temperature equa-
tions then hecome

T
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We assume that the perturbations vary as exp(ik -
x) and perform a Laplace transform in time with
the transformed variables f; satisfying f; =
S5 exp(—st)fi(t)dt. Equations (14)—(18) then yield
aby.
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Here v = n/py and 6 = ({ + 7/3)/pg. Note that the
equation for the phase S has heen eliminated by differ-
entiating Eq. (15) by z and substituting into Eq. (14).

Laplace transforming in z, where & = [ g1(2)
exp{—oz)dz, we find

solPy/ng) + ik, B, + oD, = C/py, (24)
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Here
C = pi(t = Osa) + pyly,(z = O;s),

M, =0, =0 ~vad, (z=0;s)

. 8b,,
— ik Dy {z = 0;5) — WE (z = 0;8),

My =v,.{t = 0i) + (c2v)
X [Ty{z = 0}/ Ty + bz = O;s}/py)
= (v + 8)[aby,(z = O;s)

80,
+m(z—0s)]+:HkLUL(z—Os),

= {y — 1) Ty {z = O;0)

ary
- xu’Tl(z = o) - xg (z = Oyo),

af
W= ol (z = O3s) + a—; (z = Ois).

Alsg,sp=s+ ik, « v, n—su+'rx(ki-u'~), ro=sp+
(kjo—d')rl—ro'f'ﬂk_l-,ru GU"’pu—Su"‘ I»'+
HEL —o*), v =k - VlJ_)/kJ_s ky = IkJ_ .

The fluid equations [Eqs. (24)-(27)] may be ex-
pressed as 8 matrix equation
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Here g = —iflk 0. Solving Eq. (29) for v yields
-1 Tye y
v=MIC+ M, (=1, | {32)
T[]

The first component of Eq. (32) is
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Aoy = (M™,Cy; + (M—l)u(rrf 1/To). (39)
The perturbation to the index of refraction is thus
Ay = (dn/dp)pg(M™) ,Coi + (dr/dp)(ag T/ THM™), y  (34)

Substitution of Eq. (34) into the transformed wave
equation, Eq. (28), yields
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W assume that variations in z are much slower than
variations in x and v:

lo?| < B3 (42)

Physically, Eq (42) is equivalent to the assumption
that the growth length and the perturbation Rayleigh
length (~2k/k% ) are both much larger than the wave-
length of the perturbation (27/k ). Thesmallestrele-
vant k, is of the order of 2x/a, where a is the laser
beam diameter. The spatial growth length is ~z/G,
where G is the logarithmic gain of the perturbation
[Eq. (50)]. Equation (42) is easily satisfied (a poster:-
ori) for the parameters used in Fig. 1.

D(0,5) has a zero, and hence the integrand of Eq. (40)
has a pole when

kY
=dii—
-

N TIokY, 2
Bﬂ(an + 'Yxkﬂ_l_)[ﬂ'u + (P‘ + E)ki]/cs + ki (8[] + xkﬁl)
‘ {48)

Evaluating the residue implies that
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Fig.1. Schematic representation of thermal blooming gain in the x
— ¢ plane, Asymptotic regimes and the respective gains for each
region are shown. Dashed lines indicate contours of constant gain.
The four contours shown are for G =1, 3,10, and 30. Double dashed
lines schematically indicate closely spaced contours lines due to the
decay of the perturbations from thermal diffusion. The distortion
number, Np = ['lpkat, is held constant, The normalized variables
are & = (2/2k)12k ), T = (2k/2)Ve,t, x = (2k/z)V*x /ey, and Ay = 2w/
k,. For this figure the following parameters have been assumed:
Np=1000,z=5X105cm, k=63 X 10¢cm™1, x = 0.22cm?s™], 1y =0,
& =3%X10¢cmsL .

'

qtim .
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When lel > 1, the integral may be evaluated by the
method of steepest descents. Inthat casethe behavior
for large z and ¢ iz given by

Lizt)~ Z explie(sg)]s (46a)
where
d
d_:] = 0 at 8y = Sy ) (46!3)

In Eq. (46a) the summation is over all roots sp; that :
satisfy Eq. (46b). Using Eqs. (43) and (45) we obtain .; ;
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Physically, the assumption cgk, 3 |so| corresponds
to a sound transit time of the perturbation r, that is
short compared with the growth time of the perturba-
tion7g=1/G. The assumption ¢Z/y > |sof corresponds
to 7; &« (rgrp)V?, where rp = 1/xk% is the diffusion
time. For the parameters in Fig. 1, if the first condi-
tion is met, the second condition is automatically satis-
fied since tp > 7, over the range of % in the diagram.

This equation has the approximate solutions

4k
(£ V(T Igkz /)2 ~ xk?, i g+ ki > =
’ L
8) = ?
LA 4ET,
(?l) (RIS 2/~ ks i Jog o+ ok < -
4
(48)

The total logarithmic gain G = Re(y) can thus be
approximately written

L2NpY i« < NY, & Npf,

G = 14N} I x> NY, ¢ NI, (50)
—xr'r if N, » G (es defined above),

Here Np = Tokzt, N, = xk® t = xx2r, k. = (2/2k) 2k ), 7
= (2k/z)V%c,t, and x = (2k/2)12y/c,.

In Eq. (50), the maximum gain occurs when ¢ = At
(the laser pulse length) and 2z = h (the height of the
atmosphere). These same results were found in Ref. 4,
except for the presence of the diffusion term in Eq.
(60). '

We now turn our attention to short pulse lengths in
which ¢,k ; <« [spl (but still long compared to a light
transit time through the atmosphere). In this limit
Eq. (47) can be written

(47

sis,+ 5

Sqlsp + 8)%(s, + 53)° ’ (&3)
where s§ = £i3Tyc2k? ka/t. If |ss| > Isal,lsgl,lssl the
dominant saddle point occurs at sp = 55, When |s5| «
|sal,lssl,ls4l, the thermal and viscous decay modes domi-
nate ag before,

The total logarithmic gain is again found by inser-
tion of the saddle point into Eq. (45) and taking the
real part of ¢:

L8 (Npede 0 jf p NEOB, 5 Np/r,
G LB (Nper M iF a»> NEPA8 ¢ Ny, (54)
—mex (YN, N,) if N,.N,> G (above).

Here N, = (v + H)k?,_t.

Equations (50) and (54) give the gain for the thermal
blooming instability for various parameters. It is of
interest to investigate how the logaithmic gain G varies
when the wavenumber &, and pulse time At are varied,
and the quantity fyAt (or equivalently Np) is held
constant. Figure 1 delimits the various asymptotic
regimes (in the &, , At plane) with the asymptotic gain
labeled for each region and a few approximate contours
given. The asymptotic formulas should be valid when
a point in the & , At plane lies far from an asymptotic
boundary.,

IV. Very Short Pulsa Times

When the pulse time is shorter than the propegation
time through the atmosphere, Egs. (12) and (13) must
be used rather than Eqs. (14) and (15). In that case
Eq. (28) becomes

' 1asd; Tk olz 8o + Hlvx -+ v + BB ] (51)
) 5ot K Tk e 12
; —+ S = {8g + vxk2 Pleg + (v + DKL)
4k sylsg + yxkd ey + (v + 0)k%)

In the limit 1/4k% < [Tpc?/sd| the equation can be
written
le 8§25y + 1)

= '
S‘IJ"E(.?U 4 Sz)aiﬂ.(su + 55)312

where s3/2 = 2i(32/2c,t) (TI)V2(c.k 1 )2, 55 = yxk2 , 8=
(v + O)B7, 84 = Falyx + v + k5. TIf |sy] > [sal,lsal s,
the dominant contribution to the saddle point integral
occurs when sp 2 51, If |s1] << |sal, |sal, [s4], saddle points
occur when sy = —s; and s; = —s;, corresponding to

" decay modes caused primarily by viscosity [sp = —(» +
8)&% ] or thermal diffusion (so = —yxk%). Forair these
decay rates are comparable.

In the limit when diffraction is important, 1/4k2 >

: O T Lyc?/sd); then Eq. (51) can be written

(52)

2 KL B4 g N
{(”7“) e e e e

Here W depends on initial and boundary conditions,
the exact form of which is not needed for this discus-
sion.. We assume as before that o] <« k; and also that
ls/el «< k. As long as growth times are substantially
longer than light transit times across a perturbation,
the latter approximation is valid, as it is for the param-
eters in Fig. 1. In this case, the second term within the
square brackets above is negligible compared with the
firat,
Repeating the steps to Eq. (43) we find
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Fig.2. Schematic representation of thermal blooming gain in the x
— 7 plane. Same as for Fig, 1 except wind shear and the heuristic
description of turbulence (described in text) have been included.
Double dashed lines indicate the horders of the regions where diffu-
sion (turbulent and molecular) results in decaying perturbations.
The variables are the same as in Fig. 1 with the addition that y = (z/
apyVielfe, = (2/2kIDVE(,/c,). The parameters are the same as in
Fig. 1 except that vp = 450 em 5~ and ¢ = 180 em? 577

o= + 1\ (EG)

where oy is the solution [Eq. (43)] without inclusion of
the light transit time effects.
The saddle point occurs when dp/ds = 0. Hence

D=t—-é-z+—z. (57}

Thus the growth rates are identical to those previously
obtained on replacement of t with £ — ngz/c. Therates
are valid only within the laser pulse, i.e., when ¢ and 2
satisfy ngz/c < t < npz/c + At. If the transit time is
much shorter than a pulse time this correction is negli-
gible. When the pulse time is much shorter than a
transit time, the maximum gain occurs when t — ngz/c
= At. Thus the maximum gain calculated in Secs. I1T
and IV is found using Eqs. (50) and (54) and replacing ¢
with pulse length At.

We should note that for very short pulse times, other
physical effects, which have been ignored in this calcu-
lation, can become important. In particular, we esti-
mate that for At < 1079 s (for parameters of Fig. 1)
electrostriction and nonlinear index of refraction ef-
fects (Kerr effect) will alter the growth rate. Also, at
very short pulse times, coupling of the perturbations to
spatial and temporal gradients of the equilibrium in-
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tensity can substantially affect growth of the instabil- -

ity.
V. Wind Shear and Turbulence

The actual atmosphere does not have a velocity pro-
file in which the wind velocity is a constant. Both
large-scale shear and fluctuating random components
(turbulence) can be present (see, for example, Ref. 12
for experimental measurements). Large-scale shear
(both random and systematic) will phase mix and limit
the growth of the instability. Small-scale turbulence
can convect heat out of a hot spot in a manner analo-
gous to thermal diffusion. We shall nonrigorously
estimate the magnitude of both effects.

Theories of turbulence!®15 and experiments suggest
that often a Kolmogorov spectrum may describe the
atmosphere. In this theory, energy is deposited into
the atmosphere at a rate e per unit mass, per unit
volume, per unit time, on the scale ! of the largest
eddies. If uis the speed of the largest eddy,

&~ 1l (58)
On scales A smaller than [, it is assumed that the speed
associated with that scale can depend only on g, and A,
Hence, on dimensional grounds,

p(A) ~ el {59

The effective turbulent diffusion coefficient is then
obtained:

thsrhm) ~ (AR ~ E}Iﬂx!/ﬂ — (2_'1_)4.’:! e}"“kf’“. (60}

Here the final approximate equality sign associates
eddy size A 'with perturbation wavelength 2z/k .

Equation {60) may be used. for scale lengths such
that Ay & \ <« [, where \g = x*/e}* and where y is the
thermal conductivity defined as in Eq. (6). Equation
(80) can be used in Egs. (50) and (54} to estimate the
effect that turbulent heat transfer on small scales has
on thermal blooming. The regimes (large times and
large perturbation wavelengths) where this effect is
important are plotted in Fig. 2.

To estimate heuristically the effect of large-scale
phase mixing by turbulent or systematic wind shear,
we return to Eq. (23):

&, K
az:_: + Zﬁifl = I (61)

and the equivalent of Eqgs. (18), (33}, and (34) in the

isobaric approximation®(long-time limit)*:

an,
y +v.Vn,=-TI. (62)

As will be shown, wind shear will alter the growth
rate for perturbations in which the wind shear time, 1/

'k, 'z, is shorter than the growth time t/G, where v’ =

dv/dz is the wind velocity gradient. Since acoustic
effects become important when t/G « 1/c.k,, and
since ¢, > v, the isobaric approximation should nor-
mally be sufficient when including wind shear effects.
Laplace transforming Eq. (62) in time and assuming
that quantities vary as exp(ik -x) yield



&l [ﬂ TR, ] Il_fnk%_nl(t=0;z) @)

+ = -
gz |4kt s+ik, -v(z) g +ik, -v(z)

Equation (63) assumes that the velocity vector lies in
the x-y plane and is a function only of z.

The form of Eq. (63) suggests!® that the WKB meth-
od be used to solve it:

P T _—
fl(z,s) = I:k_(':)'] {Ii exp[:l:iL kz(z’)dz’]} +plz). (64)

Here I, are coefficients for the two linearly indepen-
dent solutions of the homogeneous Eq. (63) that satisfy
the boundary conditions on I;(z = 0) and 0I;/dz(z = 0).
The function p(z) is the particular solution, which
depends on the initial index of refraction perturbation
is the particular solution, which depends on the initial
index of refraction perturbation spectrum:

o B[ mi=02)
2} =
P i%(z) Jn s+ ik, - v(27)]Al%=)

% l:sin I kz(z”)dz”] dz',
Here k2 = & /4k? + TIok? /[s + ik - v(2)], and ko =

k(z = 0). )
Inverting the Laplace transform, we obtain

I‘i (L] k:ﬂ e
Hed =g, [k,(z)]

X exp[st +i r kz(z',s)dz’jl ds + P(z,t).
0

Here P(z,t) is the part of the solution due to the partic-
ular solution in Eq. (64).

‘The argument of the exponential in the WKB solu-
tion is

o=stdi J ky(25)dz". (85)
0
Thus the equation for the saddlepoint becomes
2 dkoA2' )
Oe=t+ 1[ dz’. (66}
n ds

Solving Eq. (66) for s and inserting the result into Eqg.
(85) yield the asymptotic argument of the exponential.
The WKB solution obtained in this manner will be
valid provided that |(1/k.)(dk./dz)| « |k.l; i.e., the
chanpge in R, in one wavelength (27/k.) is much less
than |k,|.

As before we search for the gain in asympiotic re-

gimes:

[ —Tlk E{-,, - Tk ’
dk, ) {s + ik, -v)* 442 s+ik, -v ’ (&)
ds ~ | (TR, BY | TIkY

—_— T K ||
L2(s + ik, - 9% 4k s ik, -V

(k2 TLk K. Tl

—t » |—
2k s+ik, v 2 s+ik, v
B, = 1oV 4k + (68)

—TIES \Y2 RY « TIKS
(\s+ik -v 4kt

st+ik, -v '

To proceed further we need to specify the velocity as a
function of z. For the case of a steady linear systematic
wind shear we assume

ky'v=k, -vy+k vz (69)

Using Eqgs. (66)—(69), in the large £, regime saddle
points occur at

_{iTIz\l Tlykz \1/2
i it &,z <<( ) .
t t
fo = Thk . TIgk £ ) Tiykz \12 {70)
PRI Sl S T) '
The resulting gain is thus
(2T Tty for £ <€ b, o
= [1+].n(t/'fc,m)](r.[uh/k4_”') for 23>t

Here teitn = I“ng/(kiu’gz). The upper part of the
equations in Eq. (71) is the now familiar result in Ref.
4, the lower indicating a saturation for times larger
than ~ti. Physically ¢ is simply the critical time
found by equating the growth time (t/T'Iykz)Y2 to the
wind clearing time of the perturbation (1/k,v'z) and
solving for the time. The gain is found approximately
by inserting teqy into the standard Briggs result [the
upper of Eq. (71)]. Thus in the wind-shearing case the
logarithmic gain grows at {12 until ¢ = t; at which
point it reaches a plateau, henceforth growing only
logarithmically.

Inthesmall k| regime the saddle points are given by

(ﬂ:i)Q.ffi(rIok'izﬂ/t?.) 1/3
8y =

2T [Tl z\1 (12)
—:2; —ik 'z (—i)”: (#-) for £t

I'le

for t<« tcrit.’l

Here torie = [TLo/(v"%k L 2)] V2
The gain becomes

(TIF3 22 for ¢ <ty
(Tl 2/u) " for ¢35 .

Note that the lower part of Eq. (73) agrees with that
of Ref. 7 [Perkins's Eq. (32}], while the lower part of
Eq. (71) can be made to agree with Eq. (20) in Ref, 6, if
f(v) = v in Rosenbluth’s notation. Figure 2 shows
where these growth rates are pertinent. Here we have
used k v’z = k, vg, where vy = 460 cm/s, to illustrate
the magnitude of this type of damping. Note also
that, with wind shear, diffusion becomes importent at
shorter times than without wind shear, because wind
shear limits the growth of instability but does not lower
the diffusive decay rate.

As pointed out by Rosenbluth,® when the direction
of shear is perpendicular to k(& v’z = 0), instabilty
growth occurs as though there were no shear, Thusa
purely systematic wind profile given by Eq. (69) will be
essentially unaffected by shear for directions of k, so
that &, v’z = 0. However, for an atmosphere with a
Kolmogorov velocity spectrum, the turbulence in the
inertial range is assumed to be isotropic. Thus for all
k , there iz apparently no preferred direction in which
the shear will not lower the growth rate. We estimate
the effect of turbulent shear by replacing Eq. {(63) with

(73)
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Fig.3, Physical regimes inthe x — 7 plane. EachregimeinFig. 2is
labeled according to the dominant physical processes. Althoughthe
borders between regimes are formally the lines where adjacent as-

ymptotic growth rates are equal, they correspond approximately to

the equality of physieally meaningful time scales or length scales.
1g = growth time = t/G, v, = perturbation sound crossing time = 2/
{eak), 7w = perturbation wind shearing time = 27/(v’zk ). (We
gEsume v’z = v, 80 7y i5 essentially the perturbation wind clearing
time as well.) +p = perturbation molecular diffusion time = 1/
(x¥%), rrp = perturbation turbulent diffusion time = 1/ (%turbk?) =
1/[(2r)i3el343%7), 2 = growth length = 2/G, and 2p = perturbation
Rayleigh length = 2k/k7 .

u(z) = u,(2/0)" (74)

Here, if @ = 1/3, the physics of Eq. {(53) should be
qualitatively modeled by use of Eq. (74). Repeating
the procedure following Eq. (69) we find a saddle point
in, for example, the large k| regime at

. FAL PIDkl! z\1-m
gy = lk.Lul (T) +* m (l) H (75)

with the corresponding gain

G (L4 Inet )] —— “ Kl (7)1 Y for t> g (76)
.!
Here /o = (I‘Ioki/oz(kLv¢)2)(z/l)1‘2“.

If the largest eddy sizes are of the order of the atmo-
spheric scale height, and if velocities associated with
those scales are of the order of the average wind veloci-
ty, the effect of turbulence {for all & ) will be compara-
ble with the effect of systematic wind shear [the lower
half of Eq. (71)]. Note that for this choice of v; and [, ¢
~ 2 X 102 cm? 53, Measured values of e, appear to be
highly variable and generally in the 10~1-103-cm? 873
range.l?
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.addition to shifting to larger k).

VI. Summary and Discussion

Figures 2 and 3 are our main results, They locate
the regions in the &, — ¢ (or equivalently « — +) plane
{at constant Np)} in which different physical effects
dominate. Figure 3 labels the reglons by the physical
effect, while Fig. 2 labels the regions by the instability
growth (or decay) rates.

Note that there is no apparent advantage in putting
all the energy into a single short pulse. Earlier work

Ae. g Ref. 4) found that at large tunes the logarithmic

gain of the perturbatlons grew as k%", reached a con-
gtant value (NN1 “) for larger &, , and then decayed
exponentially from thermal diffusion above some criti-

calk,. Itisapparentfrom Fig. 2 that for pulses of the

same total energy, as the pulse time is lowered (for
example, if Np = 1000 and ¢ < 10~25), the gain at small
k, is lowered. This is true because the heating of the
atmosphere does not instantaneously lower the densi-
ty. A delay of the order of the sound crossing time of
the perturbation occurs before isobaric conditions are
reached. Thus the index of refraction does not change
as much for short times as it does for long pulse times.

However, at large enough &k, the sound crossing
time of the perturbation is short enough, so that the
density can be lowered to reach the maximum gain
(NN}J/ ). Furthermore, at short times the diffusion
cutoff oceurs at even shorter length scales than at long
times. Thus the spectral band in &, over which the
perturbations have grown large has become wider (in
Since Np can be
quite large the optical quality of the beam can be
highly degraded. [Of couirse, the exact amount of deg-
radation depends on the amplitude of the initial noise
spectrum fi{k  ,t = 0).]

In contrast, at large times, the effect of wind shear
and turbulence begins to reduce the distortion. Fig-
ure 2 indicates that for Np = 1000 and for & pulse
length of ~1 s, wind shear and turbulence reduce the
maximum gain from exp{~30) to exp(~3). This is
based on the assumption that the shearing gradient
scale is an atmospheric scale height (5 km) and the
change in wind velocity is ~450 cm 5™ (~10 mph), or
that the turbulent velocity and associated turbulent

.cell scale size are given by the same respective parame-

ters. Since both wind shear and turbulence can vary
from site to site and as a function of time, experimental
atmospheric data are required to evaluate an optimum
pulse time more accurately.

In this paper we have concentrated on the case of a
freely propagating beam; the short pulse effects for a
phase-compensated beam are the subject of current
research by the author. The main ohjective of this
paper has been to obtain the basic scaling laws for the
fine scale thermal-blooming instability. We should
note, however, that we have treated the distortion
number Np as a known constant and the atmospheric
velocity profile as given, both of which need better
experimental determination. Furthermore, the
growth rates we have obtained should be regarded as

indicative; future numerical work will be required to-




model accurately the complexity of the atmospheric
density, velocity, and absorptivity profiles.

Finglly, we should emphasize that Figs. 1 and 2
reflect the growth rates for single pulses with the same

energy per pulse. A multipulse scheme to deliver the

same energy will require a separate analysis, although
the present work should lay much of the groundwork
for such an exercise. :
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